skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Runsewe, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Romeijn, H. E.; Schaefer, A.; Thomas, R. (Ed.)
    This paper investigates the optimal design for a distributed generation (DG) system adopting wind turbines. The paper contribution is to formulate and solve a non-linear stochastic programming model to minimize the system lifecycle cost considering the loss-of-load probability and the thermal constraints using climate data from real settings. The model is solved in three cities representing high to medium to low wind speed profiles. Data analytics on 9-years hourly wind speed records permits to estimate the probability distribution for the power generation. The model is tested in a 9-node DG system with random loads. For a total mean load of 50.1 MW, New York requires the largest number of turbines at the highest annual cost of USD3,071,149, then Rio Gallegos is USD2,689,590, and Wellington is lowest with USD2,509,897. If the total load increases by 6 percent, the system is still capable to meet the reliability criteria but installed wind capacity and annual costs in New York and Rio Gallegos end higher than in Wellington. Results from decreasing the loss-of-load probability from 0.1 to 0.01 percentage show that the system designed using stochastic programming can be highly reliable. 
    more » « less